
MULTIGRID REDUCTION IN TIME FOR NONLINEAR
PARABOLIC PROBLEMS

R.D. FALGOUT ∗, T.A. MANTEUFFEL † , B. O’NEILL † , AND J.B. SCHRODER ∗

Abstract. The need for parallelism in the time dimension is being driven by changes in computer
architectures, where performance increases are now provided through greater concurrency, not faster
clock speeds. This creates a bottleneck for sequential time marching schemes because they lack
parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure
that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel
hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with
speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with
MGRIT, where efficiency is defined as achieving similar performance when compared to an equivalent
linear problem. The benchmark nonlinear problem is the p-Laplacian, where p = 4 corresponds to
a well-known nonlinear diffusion equation, and p = 2 corresponds to the standard linear diffusion
operator, our benchmark linear problem. When solving a linear problem using implicit methods and
optimal spatial solvers, e.g. classical multigrid, the spatial multigrid convergence rate is bounded
across temporal levels, despite a large variation in time step sizes. This is not the case for nonlinear
problems, where the cost of a nonlinear solve increases dramatically on coarser time grids. This is the
key difficulty explored by this paper. By using a variety of strategies, most importantly, an alternate
initial guess for the nonlinear time-step solver and spatial coarsening, the average cost per time step
evaluation is reduced over all temporal levels to a range similar to those of a corresponding linear
problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.

Key words. multigrid, multigrid-in-time, parabolic problems, nonlinear, reduction-based multi-
grid, parareal, high performance computing

AMS subject classifications. 65F10, 65M22, 65M55

1. Introduction. Previously, increasing clock speeds allowed for the speed-up
of sequential time integration simulations of a fixed size, and allowed simulations
to be refined in both space and time without an increase in overall wall-clock time.
However, increases in clock speed have stagnated, leading to a sequential time inte-
gration bottleneck. Future increases in compute power will be available from more
concurrency, and hence, speedups for time marching simulations must also come from
increased concurrency.

By allowing for parallelism in time, much greater computational resources can be
brought to bear and overall speedups can be achieved. Because of this, interest in
parallel-in-time methods has grown over the last decade. Perhaps the most well known
parallel in time time algorithm, Parareal [23], is equivalent [13] to a two-level multigrid
scheme. This work focuses on the multigrid reduction in time (MGRIT) method
[10]. MGRIT is a true multilevel algorithm and has optimal parallel communication
behavior, as opposed to a two-level scheme, where the size of the coarse-level limits
concurrency.

Work on parallel-in-time methods actually goes back at least 50 years [30] and
includes a variety of approaches. Work regarding direct methods includes [29, 32, 25,
6, 14]. There are iterative approaches, as well, based on multiple shooting, domain
decomposition, waveform relaxation, and multigrid, including [21, 15, 24, 1, 16, 17, 34,
5, 35, 33, 19, 18, 23, 7, 28, 9, 36, 10]. For a gentle introduction to this history, please

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box
808, L-561, Livermore,CA 94551. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-JRNL-692258
†Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado

1

see the review paper [12]. This work focuses on multigrid approaches (and MGRIT
in particular) because of multigrid’s optimal algorithmic scaling for both parallel
communication and number of operations. An additional attraction of MGRIT is
its non-intrusive nature, where the user employs an existing sequential time-stepping
routine within the context of the MGRIT implementation. This work uses XBraid
[37], an open source implementation of MGRIT developed at Lawrence Livermore
National Laboratory (LLNL).

MGRIT solves, in parallel, a general first-order, ordinary differential equation
(ODE) and corresponding time discretization:

(1.1) ut = f(u, t), u(0) = u0, t ∈ [0, T],

(1.2) u(t+ δt) = Φ(u(t), u(t+ δt)) + g(t+ δt),

where Φ is a nonlinear operator that represents the chosen time stepping routine and
g is a time dependent function that incorporates all the solution independent terms.
In the linear case, the application of Φ is either a matrix vector multiplication, e.g.
forward Euler, or a spatial solve, e.g. backward Euler.

Sequential time marching schemes are optimal in that they move from time t = 0
to t = T using the fewest possible applications of Φ. By applying Φ iteratively, in
comparably expensive but highly parallel multigrid cycles, MGRIT sacrifices addi-
tional computation for temporal concurrency. Both methods are optimal, i.e. O(N),
but the constant for MGRIT is higher. This creates a crossover point wherein the
added concurrency overcomes the extra computational work. Beyond this crossover
point MGRIT provides a speedup over sequential methods.

Application of MGRIT to linear parabolic problems was studied in [10]. Figure 1
shows a strong scaling study of MGRIT for linear diffusion on the machine Vulcan, an
IBM BG/Q machine at LLNL. The problem size was (257)2 × 16385 (space × time).
Three data sets are presented, a standard sequential time-stepping run, a time-only
parallel run of MGRIT, and a space-time parallel run of MGRIT. The space-time
parallel runs used an 8×8 processor grid in space, with all additional processors added
in time. Both MGRIT curves represent the use of temporal and spatial coarsening,
so that the ratio of δt/h2 is fixed on coarse time-grids, where h is the spatial mesh
width. The maximum speedup achieved by the blue curve is approximately 50, and
the crossover point where MGRIT provides a speedup is at about 128 processors in
time. The goal of this paper is to make the overall performance (i.e., crossover point
and speedup) of MGRIT for nonlinear problems similar to that for linear problems.

When considering the performance of MGRIT, the application of Φ is the dom-
inant process. For a linear problem with implicit time stepping, each application
of Φ equates to solving one linear system. When an optimal spatial solver such as
classical spatial multigrid [26, 4, 31, 20] is used, the work required for a time step
evaluation is independent of the time step size. However, when Φ is nonlinear, each
application of Φ is an iterative nonlinear solve and when using a common method
such as Newton’s, the conditioning usually depends on the time step size. To explore
the effects of introducing a nonlinearity, a model nonlinear parabolic problem, known
as the p-Laplacian, is considered:

(1.3) ut(x, t)−∇ · (|∇u(x, t)|p−2∇u(x, t)) = b(x, t), x ∈ Ω, t ∈ [0, T],

2

Fig. 1: Time to solve 2D linear diffusion on a (128)2 × 16385 space-time grid using
sequential time stepping and two different processor decompositions of MGRIT. [10]

subject to the following Neumann boundary and initial conditions:

|∇u(x, t)|p−2∇u(x, t) · n = g(x, t), x ∈ ∂Ω, t ∈ (0, T],(1.4)

u(x, 0) = u0(x), x ∈ Ω.(1.5)

The p-Laplacian for p = 4 is well-known as a means of modeling soil erosion and
transport [2] and has also found uses in image processing (denoising, segmentation and
inpainting) and machine learning (see [8] for an overview and [22] for an introduction).
In this paper, the model nonlinear problem corresponds to p = 4, while the comparable
linear problem corresponds to p = 2, which is the standard diffusion operator.

Our study will consist of investigating parallel-in-time for equation (1.3) in the
context of XBraid and MGRIT. We will balance user concerns such as overall time-
to-solution, memory use, and non-intrusiveness.

To begin the study, we consider a naive application of MGRIT to (1.3), where a
large increase in the cost of a nonlinear solve (for Newton’s method) on the coarser
temporal grids is observed. This is caused by the relatively large time steps (compared
to the finest grid) and the associated poor initial guess to the Newton solver on the
coarse levels. These increases counteract the strength of multigrid, where speedup is
achieved by using cheap coarse grid problems to accelerate convergence on the fine
grid. Therefore, our strategy is to minimize the cost of each nonlinear solve, which is
measured with a cost estimate. The goal is to ultimately achieve similar efficiencies
for the nonlinear and linear versions of (1.3).

To reduce the average cost of each Φ evaluation, an improved initial guess is
investigated. A commonly used approach is to use the previous time step as the
initial guess for the nonlinear solver. However, for large time steps, which are found
on coarse time levels, this initial guess is poor. The iterative nature of MGRIT gives
us another option at no additional computational cost. Instead, the approximate
solution at the corresponding time point and MGRIT level, but from the previous
MGRIT iteration, can be used. This reduces the average cost of a Newton solve to
below that of an equivalent sequential time integration. However, this also creates a
tension between memory usage and computational efficiency, because MGRIT need
not store every point in time.

Following this, a spatial coarsening strategy is pursued to limit δt/h2 on coarse
time grids. The goal is is to maintain good conditioning of Φ fixed over all time levels
so that fewer Newton iterations per Φ evaluation are required on coarse levels. In
addition, the smaller problem sizes drastically reduce coarse grid compute times.

3

t0 t1 t2 t3
...
tm

T0 T1

tNt

∆T = mδt

δt

Fig. 2: Fine- and coarse-grid temporal meshes. Fine-grid points are present on only
the fine-grid, whereas coarse-grid points (red) are on both the fine- and coarse-grid.

Two additional strategies include a progressive loosening of the Newton solve
tolerance on coarser levels and avoiding unnecessary work on the first MGRIT cycle.
Further speedups can be achieved by optimizing the number of levels in the MGRIT
hierarchy and by loosening the Newton solver tolerance during the first three MGRIT
iterations on all levels, where the approximate solution is still poor. Overall, the
most effective strategies are spatial coarsening and the improved initial guess, but the
other strategies combined have a similarly significant impact on runtime. Together,
these strategies give a MGRIT algorithm for nonlinear problems that has an efficiency
similar to that found for a corresponding linear problem.

In Section 2, the general MGRIT framework is discussed. In Section 3, some
implementation details are given. In Section 4, our strategy for improving the perfor-
mance of MGRIT is proposed and justified. In Section 5, this strategy is implemented.
In sections 7.1 and 7.2, weak and strong scaling results are presented. When imple-
mented using the strategies presented in this paper, the nonlinear implementation of
the MGRIT algorithm achieves an efficiency similar to that found for linear problems.

2. MGRIT overview. First, a brief overview of the MGRIT algorithm for time
independent linear problems is presented. The nonlinear, time dependent, extension
follows in Section 2.1. Define a uniform temporal grid with time step δt and nodes
tj , j = 0, . . . , Nt (non-uniform grids can easily be accommodated). Further, de-
fine a coarse temporal grid with time step ∆T = mδt and nodes Tj = j∆T, j =
0, 1, . . . , Nt/m, for some coarsening factor, m. This is depicted in Figure 2. In block
triangular form, the time-stepping problem (1.2) is

(2.1) Au =

I
−Φ I

. . .
. . .

−Φ I

u0

u1

...
uNt

 =

g0

g1

...
gNt

 = g.

Sequential time marching is a forward block solve of this system. MGRIT solves
this system iteratively, in parallel, using a coarse-grid correction scheme based on
multigrid reduction. Both are O(N) methods, but MGRIT is highly concurrent.
Multigrid reduction strategies are essentially approximate cyclic reduction methods
and, as such, successively eliminate unknowns in the system. If the fine points are
eliminated, the system becomes:

(2.2) A∆u∆ =

I
−Φm I

. . .

−Φm I

u∆,0

u∆,1

...
u∆,Nt

 = Rg = g∆.

4

By defining “ideal” restriction, R, and interpolation, P , this system can be represented
in a multigrid fashion. Let,

R =

I

Φm−1 . . . Φ I
. . .

Φm−1 . . . Φ I

 ,(2.3a)

PT =

I ΦT . . . Φm−1,T

. . .

I ΦT . . . Φm−1,T

 .(2.3b)

The interpolation injects at coarse points before extending those values to fine
points, i.e., it is injection from the coarse- to fine-grid followed by F-relaxation (defined
below).

With this, the “ideal” coarse-grid operator is A∆ = RAP .1 This is referred to as
ideal because the solution of (2.2) yields an exact solution at the coarse points. This
coarse grid is essentially a compressed version of the problem. If this is followed by
interpolation, then the exact solution is also available at fine points. The limitation of
this exact reduction method is that the coarse-grid problem is, in general, as expensive
to solve as the original fine-grid problem (because of the Φm evaluations). Multigrid
reduction methods address this by approximating A∆ with B∆, where

(2.4) B∆ =

I
−Φ∆ I

. . .

−Φ∆ I

 ,
and Φ∆ is an approximate coarse-grid time-step operator. One obvious choice for
defining Φ∆ is to re-discretize the problem on the coarse grid so that a coarse-grid time
step is roughly as expensive as a fine-grid time step. This paper makes that choice. For
instance, with backward Euler, one simply uses a larger time step size. Convergence
of MGRIT is governed by the approximation, A∆ ≈ B∆, and this choice of using a
re-discretization of Φ with ∆T = mδt has proved effective [10, 11]. It is important to
note that, while the definition of this algorithm relies upon Φ and Φ∆, the internals of
these functions need not be known. This is the non-intrusive aspect of MGRIT. The
user defines the time-step operator and can wrap existing codes to work within the
MGRIT framework. The coarse grid is used to compute an error correction based on
the residual equation (see Algorithm 1). Relaxation, a local fine-grid process, is used
to resolve fine-scale behavior. Figure 3 shows the actions of F- and C-relaxation on a
temporal grid with m = 4. F-relaxation propagates the solution forward in time from
each coarse point to the neighboring F -points. Overall, relaxation is highly parallel.
Each interval of F -points can be updated independently during F-relaxation. Every
C-point update (during C-relaxation) is similarly independent.

1We note that RAP = RIAP , where RI is injection at the coarse points. Thus for efficiency,
injection is always used to map to the coarse-level (like Parareal). The exception is the spatial
coarsening option where spatial restriction and interpolation functions, Rx() and Px(), are used to
coarsen in space as well as time.

5

F-relaxation
↑
g

↑
g

↑
g

↑
g

↑
g

↑
g

Φ Φ Φ Φ ΦΦ

C-relaxation
↑
g

↑
g

Φ Φ

Fig. 3: F- and C-relaxation for coarsening by factor of 4

Given the reduction nature of the algorithm, the work [10] showed that the two-
grid error propagator in the linear case with FCF-relaxation is

(2.5) (I − PB−1
∆ RA)(P (I −A∆)RI) = P (I −B−1

∆ A∆)(I −A∆)RI .

This equation will be used later when spatial coarsening is introduced (see Section 5.3).

2.1. MGRIT algorithm for nonlinear problems. The linear MGRIT algo-
rithm [10] is easily extended to the nonlinear setting using full approximation storage
(FAS), a nonlinear multigrid scheme [3]. The FAS description of MGRIT first ap-
peared in [11]. Note that the F-relaxation two-grid variant of nonlinear MGRIT is
equivalent to the Parareal algorithm [13].

The nonlinear MGRIT algorithm is presented in Algorithm 1 as a two-level
method, but can be used in a multilevel setting by recursively applying the algo-
rithm at Step 4. Ideal interpolation (2.3) is carried out in two steps (7 and 8) for
simplicity in implementation.

Prior to step 1, the initial guess at the fine grid C-points must be set. In general,
the C-points are initialized with the best available estimate of the solution. Alterna-
tively, the initial guess can be obtained using a full multigrid methodology. In this
case, the fine grid C-points are obtained by interpolating a cheap coarse grid solution
to the fine grid (see Section 6.1).

Algorithm 1 MGRIT(A, u, g)

1: Apply F- or FCF-relaxation to A(u) = g.
2: Inject the fine grid approximation and its residual to the coarse grid:
u∆,i ← umi, r∆,i ← gmi − (A(u))mi .

3: If Spatial coarsening, then
u∆,i ← Rx(u∆,i), r∆,i ← Rx(r∆,i).

4: Solve B∆(v∆) = B∆(u∆) + r∆.
5: Compute the coarse grid error approximation: e∆ ' v∆ − u∆.
6: If Spatial coarsening, then
e∆,i ← Px(e∆,i).

7: Correct u at C-points: umi = umi + e∆,i.
8: If converged, then update F -points: apply F-relaxation to A(u) = g.
9: Else go to step 1.

The reader will note that with exact arithmetic, MGRIT with FCF-relaxation

6

16�t, �x

4�t, �x

F-cycle	

�t, �x �t, �x

16�t, 4�x

4�t, 2�x

Fig. 4: Example multigrid V-cycle with space-time coarsening that holds δt/h2 fixed
on the left, and then time-only coarsening on the right.

propagates the initial condition two full coarse grid time intervals (2∆t) each cycle.
Thus, MGRIT is equivalent to a sequential direct solve in Nt/(2m) iterations. With
F-relaxation only, the sequential solution is achieved in Nt/m iterations. The speedup
comes from the fact that MGRIT converges in O(1) iterations.

A variety of cycling strategies are available in multigrid (e.g., V, W, F). All results
presented here use the standard V-cycle depicted in Figure 4. This corresponds to Al-
gorithm 1 with the “Solve” step turned into a single recursive call. The recursion ends
when a trivially sized grid, of, say, 5 time points, is reached. At this point a sequential
solver is used. On the right in Figure 4, a V-cycle with only temporal coarsening is
shown. Full spatial coarsening, depicted on the left, fixes the “parabolic” ratio, δt/h2,
on all levels, but can degrade the MGRIT convergence rate for the nonlinear problem
considered here. Delayed spatial coarsening, described in Section 5.3, proved to be a
more effective strategy.

The MGRIT algorithm is implemented in XBraid [37], an open source package
developed at LLNL. XBraid conforms to MGRIT’s non-intrusive philosophy and re-
quires the user to wrap an existing time-stepping routine, as well as define a few other
basic operations like a state-vector norm and inner-product. The key computational
kernel is the time-stepping (i.e., Φ) routine, but all the specifics are opaque to XBraid
and done in user code. This allows the user to add temporal parallelism to existing
time stepping codes with minimal modifications. For more details, see [10] and [37].

3. Model problem implementation. The weak form of equations (1.3)-(1.5)
reads: find u ∈ V h such that

(3.1) 〈ut, vh〉+ 〈|∇u|p−2∇u,∇vh〉 = 〈b, vh〉+ 〈g, vh〉∂Ω, ∀vh ∈ V h,

where V h is an appropriate finite element space. Discretizing in time using a backward
Euler method and the temporal mesh in Figure 2 gives
(3.2)〈
uk+1 − uk

δt
, vh
〉

+ 〈|∇uk+1|p−2∇uk+1,∇vh〉 = 〈bk+1, v
h〉+ 〈gk+1, v

h〉∂Ω, ∀vh ∈ V h,

where k = 0, 1, . . . , Nt − 1, and u0 is the initial condition, given in (1.5), projected
onto the finite element space. Define Ψ(u)(v) and fk(v) to be

Ψ(u)(v) = 〈u, v〉+ δt〈|∇u|p−2∇u,∇v〉,(3.3)

fk(v) = 〈uk − δt bk+1, v〉 − 〈δt gk+1, v〉∂Ω.(3.4)

Then, the final nonlinear weak form is: find uk+1 ∈ V h such that

(3.5) Ψ(uk+1)(vh) = fk(vh), ∀vh ∈ V h, k = 0, 1, 2, . . . , Nt − 1.

7

Each time step corresponds to the solution of this nonlinear system (i.e., the inversion
of Ψ). The Fréchet derivative of Ψ(u)(v), Ψ′(u)(v)[w], is

Ψ′(u)(v)[w] = lim
a→0

Ψ(u− aw)(v)−Ψ(u)(v)

a
,(3.6)

= 〈w, v〉+ δt〈
[
|∇u|p−2 + (p− 2)(∇u)(∇u)T

]
∇w,∇v〉.(3.7)

Hence, Newtons method for (3.5) is

(3.8) uj+1
k+1 = ujk+1 − δu

j ,

where the subscripts on u are time steps, the superscripts on u are the Newton itera-
tions, and δuj is the unique element of V h such that

(3.9) Ψ′(ujk+1)(vh)[δuj] = Ψ(ujk+1)(vh)− fk(vh),

for every vh ∈ V h.
All tests were completed with T = 4 seconds and Ω = [0, 2]2 on a regular grid.

The forcing function, b(x, t), was chosen such that the exact solution was

u(x, y) = sin(κx) sin(κy) sin(τt),

where κ = π and τ = (2 + 1/6)π. Unless otherwise stated, the p-Laplacian was
used with p = 4. The spatial discretization was computed using standard bi-linear
quadrilateral elements and MFEM [27], a parallel finite element code.

3.1. Numerical parameters. The numerical testing parameters used through-
out the paper (unless otherwise mentioned) were as follows. The Newton tolerance
was fixed at 10−7. The spatial solver for each Newton iteration was BoomerAMG from
hypre 2.10.0b [20]. The BoomerAMG parameters were: HMIS coarsening (coarsen-
type 10), one level of aggressive coarsening, symmetric L1 Gauss-Seidel (relax-type 8),
extended classical modified interpolation (interp-type 6), and interpolation truncation
equal to 4 nonzeros per row. The machine used for all numerical tests was Vulcan,
an IBM BG/Q machine at LLNL.

Except for the scaling studies, the test problem size was a (64)2 × 4096 space-
time grid on the domain [0, 2]2× [0, 4] using 1 processor in space and 64 processors in
time. V-cycles and FCF-relaxation were employed in every test with a fixed stopping
criteria of 10−9/(

√
δt h). This allowed the same tolerance, relative to the fine-grid

resolution, to be used in all cases. Note that this is an overly tight tolerance with
respect to discretization error, set in large part because of the desire to investigate
the algorithm’s asymptotic convergence properties. The temporal coarsening factor
was m = 4.

4. Establishing baselines. The goal of this paper is to show that, by following
a few simple strategies, one can obtain an MGRIT algorithm for nonlinear problems
that is as efficient as those previously seen for linear problems. To that end, an
efficiency metric and two numerical baselines, through which all improvements will
be measured, are now presented.

The MGRIT cost metric used here relies on c
(j)
` , the average cost of a Newton

solve on grid level ` during MGRIT iteration j. This is a sensible choice because
the key computational kernel for nonlinear problems is the Newton solve. Section 4.1
provides a detailed discussion of this metric and why it was chosen.

8

Two baseline tests were completed, the first being the sequential baseline. This
baseline determined the average cost of a Newton solve when using a sequential solver,
on a variety of space-time grids. An efficient implementation of MGRIT for nonlinear
problems will match (or improve on) these cost estimates. The second baseline test
is called the “naive” MGRIT baseline. For this baseline, MGRIT was applied to a
nonlinear problem in an “out of the box” fashion. Typically, time stepping routines
have a hard-coded initial guess equal to the previous time step and do not implement
spatial coarsening. Hence, the “naive” MGRIT baseline mimics this. Note that this
approach did, given enough temporal processors, provide a small speedup over the
sequential routine (see Section 7.2); however, these speedups were much less than
those seen for linear problems.

4.1. Cost Metric. We define the chosen cost metric, c
(j)
` , as the average cost

of a Newton solve on grid level ` during MGRIT iteration j, i.e.,

(4.1) c
(j)
` = a

(j)
` w`,

where a
(j)
` is the average number of Newton iterations required to take a nonlinear

time step on level ` and iteration j, and w` is the number of spatial unknowns on
level `. This is the cost estimate of a single Φ application.

As motivation for this choice, let us examine a simple cost model for the entire
MGRIT algorithm. Restriction from level ` to level ` + 1 has the same cost as a
C-relaxation on level `. Likewise, interpolation from level ` to level `−1 has the same
cost as an F-relaxation on level `. Hence, beyond the coarsest grid when using FCF-
relaxation, each MGRIT level carries out 3 F-relaxations and 2 C-relaxations, for a
total of (2 + (m − 1)/m)Nt` evaluations of Φ, where for simplicity Nt` , the number
of time steps on level `, is assumed to be an exact multiple of m. Next, consider a
MGRIT V-cycle where level 0 is the finest and level L is the coarsest, ν is the number
of V-cycles required for MGRIT to converge to within the residual tolerance and Nt`
is the number of time steps at each level, again, assumed to be an exact multiple of
m for simplicity. Then, the total cost of the MGRIT algorithm is

(4.2) C(L, ν) ≈
ν∑
k=1

(
NtLc

(k)
L +

L−1∑
`=1

c
(k)
` (2 + (m− 1)/m)Nt`

)
.

Clearly, equation (4.2) implies that minimizing the average cost of a Newton solve on
each level and iteration will directly result in a reduction in the overall cost of the

MGRIT cycle, and hence, c
(j)
` can be used to measure the efficiency of the algorithm.

Section 5 examines the two most important strategies for minimizing c
(j)
` , an improved

initial guess for Newton and spatial coarsening.

While the metric shown here is c
(j)
` , another parallel performance issue is the

variance in the cost of a Newton solve over the temporal domain. On the coarser
grids, where a processor might own a single time step, synchronization effects imply
that an F- or C-relaxation cannot complete until the slowest processor finishes. This
in turn implies that the difference between the maximum and minimum cost per

Newton solve would indicate synchronization problems. We therefore note that c
(j)
`

also tracks this spread between maximum and minimum for this problem, but since
this fact is problem dependent, we draw the reader’s attention to it.

9

δt h a` w` c`

1/1024 1/64 3.5 1292 5.82e4
1/256 1/64 4.1 1292 6.82e4
1/64 1/64 9.5 1292 1.18e5
1/16 1/32 8.6 652 3.63e4
1/4 1/16 11.0 332 1.20e4

1 1/8 9.5 172 2.75e3

(a) Delayed spatial coarsening

δt h a` w` c`

1/1024 1/64 3.5 1292 5.82e4
1/256 1/64 4.1 1292 6.82e4
1/64 1/64 9.5 1292 1.18e5
1/16 1/64 12.3 1292 2.05e5
1/4 1/64 13.7 1292 2.23e5

1 1/64 13.8 1292 2.30e5

(b) No spatial Coarsening

Table 1: Baseline Newton solver costs for sequential time-stepping.

4.2. Sequential time-stepping baseline. We now establish the sequential
time-stepping baseline. Table 1 shows estimates of the cost of a Newton solve on
all of the space-time grids present in the space-time grid hierarchy when MGRIT is
applied to the model problem outlined in Section 3.1. These estimates, calculated
using equation 4.1, are the average cost of a Newton solve when using a sequential
solver.

Table 1a depicts baseline estimates for MGRIT using delayed spatial coarsening,
while Table 1b provides baseline estimates for MGRIT with no spatial coarsening. An
efficient implementation of MGRIT will match (or improve on) these cost estimates
across all levels. Table 1 indicates that the average cost of a Newton iteration is
highly dependent on the space-time grid, with there being a considerable advantage
to coarsening simultaneously in space and time. This is because spatial coarsening

reduces both a
(j)
` and w`. The decrease in a

(j)
` is explained by considering a standard

backward Euler time step,

(4.3)

(
I − δt

h2
G

)
(uk+1) = f(uk),

where G is a nonlinear diffusion operator. As δt/h2 increases, the nonlinear operator
moves away from the identity, becoming more expensive to solve. Coarsening in
space and time bounds this ratio, making the nonlinear solve needed when solving
equation (4.3) cheaper on the coarse grid. A detailed investigation into using spatial
coarsening is given in Section 5.3.

The other important strategy explored here to reduce the cost of Newton is to
improve the initial guess (see Section 5.2). This importance is also evident in Table 1,
where a` continues to increase with dt, even when spatial coarsening is used. This is
because δt is increasing, thus making the initial guess to Newton (the previous time
step) progressively worse. On the coarse levels, where δt is large, this is clearly a poor
approximation to the solution. In Section 5.2, an alternate initial guess for Newton
is pursued, not available to standard sequential time stepping, where the initial guess
is the solution at that MGRIT level from the previous MGRIT iteration.

4.3. Naive MGRIT baseline. Next, the so called “naive” MGRIT baseline
is presented. The naive implementation is an unmodified, “out of the box” type
implementation that wraps a sequential time stepping routine without any MGRIT
optimizations. In particular, the previous time step is used as the initial guess and

10

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 1.11e5 1.11e5 1.41e5 2.36e5 2.85e5 2.75e5
1 6.11e4 7.12e4 1.40e5 2.05e5 2.66e5 3.00e5
2 5.77e4 6.87e4 1.39e5 2.13e5 2.80e5 3.16e5
3 5.74e4 6.76e4 1.41e5 2.15e5 2.71e5 3.20e5
4 5.74e4 6.76e4 1.40e5 2.13e5 2.71e5 3.20e5
5 5.74e4 6.76e4 1.40e5 2.15e5 2.71e5 3.20e5

Table 2: Cost estimates, c
(j)
` , for the naive MGRIT baseline (solver 0). The cost

estimates are given in raw, unscaled form across each temporal level and MGRIT
iteration.

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1 Total (m = 4)

0 8.88e5 2.22e5 2.82e5 4.72e5 5.70e5 5.50e5 2.98e6
1 4.89e5 1.42e5 2.80e5 4.11e5 5.32e5 6.00e5 2.45e6
2 4.61e5 1.37e5 2.79e5 4.26e5 5.60e5 6.32e5 2.50e6
...

...
...

...
...

...
...

...

Table 3: For processes active on each temporal level, estimated average cost to carry
out FCF-relaxation, based on Table 2.

spatial coarsening is not implemented. Table 2 depicts the cost estimates, c
(j)
` , for this

setting inside an MGRIT cycle. Each δt (column) value corresponds to a temporal
level, while the rows represent different XBraid iterations.

Due to increasing Newton iteration counts, the cost of a coarse grid Newton solve
is, in some places, 5 times more expensive than a fine grid solve. This can lead to
an inefficient method in parallel. Consider the case where each MPI process owns
m points in time on the finest level, i.e., one CF-interval. In [10] it was shown that
this is an efficient decomposition. On coarser levels, each process then owns at most
one point in time. Table 3 gives, for the processes active on each temporal level, the
estimated cost of an FCF-relaxation. On the finest grid, these numbers are 2m times
the cost estimates in Table 2 because FCF-relaxation (for larger m) involves roughly
2m time step evaluations. Then, on coarser grids, the cost estimate is simply twice
what is in Table 2 because each processor owns at most one point, and all F -points
are relaxed twice.

In this setting, it is immediately clear how expensive Newton solves on coarse
levels can dominate the cost of a V-cycle because the levels must be traversed in
order on each processor (i.e., one can sum each row in Table 3 for a cost estimate
of that V-cycle). Since the dominant cost of a V-cycle is relaxation, this row-sum
given in the final column is then a cost estimate for each V-cycle. In contrast, for
the linear setting (when using an optimal spatial solver), the work required would be
independent of time step size. For instance, the last row of the Table 3 would read
similarly to 4.61e5, 4.61e5/m, 4.61e5/m, ... for a total of 1.04e6 (m = 4). When
targeting an MGRIT efficiency similar to a linear problem, this will be a key issue.

In conclusion, our goal is to minimize the average cost of a Newton solve, focusing

11

on the coarse grids. Controlling any growth in the cost of a Newton solve across tem-
poral levels will be key to matching the results seen with MGRIT for linear problems.
By itself, the naive application of MGRIT scales very poorly when placed alongside
the comparable linear problem (see sections 7.1 and 7.2).

5. Efficient MGRIT for the model nonlinear problem. In this section a
variety of approaches designed to make MGRIT more efficient for the chosen nonlinear
model problem (1.3) are investigated. Improvements are measured by comparing to
the naive MGRIT baseline of Section 4.3.

5.1. Solver ID table. Given the number of options considered, and to make
discussion easier, each solver is given a numerical ID. Table 4 presents each solver
considered and it’s runtime for the chosen test problem size. Each solver option is
discussed in more detail in the following subsections. However, a brief description of
each solver is presented here for the reader’s convenience.

Solver 0 refers to the naive MGRIT approach from Section 4.3. The column
heading “Spatial Grids” refers to the number of spatial grids used and is the option
introduced in Section 5.3. A value of 1 for “Spatial Grids” indicates no spatial coars-
ening, while 4 means that the finest spatial grid is coarsened 3 times for a total of 4
grids. The finest grid is 64 × 64, so coarsening further in space is not advantageous.
The difference between solvers 1 and 2 is that solver 1 delays spatial coarsening so that
it begins on the fourth temporal grid. Solver 2 begins spatial coarsening immediately
on the first coarse time grid. Remember, for this problem with 4096 time steps and
m = 4, there are only 6 temporal grids. Given the bad effects on convergence visible
from “no delay” in solver 2, unless otherwise mentioned, spatial coarsening is always
delayed. See Section 5.3 for more details.

Solvers 3, 4, 5 and 6 correspond to the improved initial guess introduced in
Section 5.2. Here, “PMI” means that the previous MGRIT iteration is used as the
initial guess to each Newton solve. This happens either at every point, or at all the
coarse grid points and the fine grid C-points, depending on whether all the points or
only the C-points are stored.

Solvers 7 and 8 correspond to turning on the “Skip” option introduced in Sec-
tion 6.1. There, the concept of skipping unnecessary work during the first MGRIT
down cycle is introduced.

Solvers 9 and 10 correspond to having a “fixed” or “scaled” Newton tolerance on
coarse grids, as introduced in Section 6.2. Essentially, the Newton tolerance is either
fixed on all levels, or relaxed on coarse grids.

Solvers 11 and 12 correspond to having “Cheap first three iters” as introduced
in Section 6.3. Here, the Newton tolerance is further relaxed during the first three
MGRIT iterations.

Solvers 13, 14, 15 and 16 reduce the number of levels in the hierarchy by setting
a larger “Coarsest grid size” as introduced in Section 6.4. For instance with m = 4,
using a coarsest grid size of 16 instead of 4 removes the coarsest level in the hierarchy.
This can improve the time-to-solution by avoiding cycling between very small grids.

5.2. MGRIT with an improved initial guess for Newton’s method. In

Section 4.2, it was suggested that c
(j)
` increases with the time step size (and hence

MGRIT level) because the initial guess becomes increasingly inaccurate. Recall that
using the previous time step as the initial guess for the nonlinear solver is a common
approach. On coarse time grids this is a poor approximation to the solution. After
MGRIT completes one iteration, the user has two choices; the previous time step, and

12

Solv
er

ID

Spat
ial

gr
id

s

PM
I

Ski
p

New
to

n
Tol

Chea
p

firs
t 3

ite
rs

Coa
rs

es
t gr

id
siz

e

Runt
im

e
per

ite
r

Ite
ra

tio
ns

Runt
im

e

0 1 Never no fixed no 4 211s 9 1898s
1 4 Never no fixed no 4 135s 9 1215s
2 4 no delay Never no fixed no 4 74s 35 2577s

3 1 C points no fixed no 4 142s 9 1278s
4 4 C points no fixed no 4 106s 9 953s

5 1 Always no fixed no 4 132s 9 1193s
6 4 Always no fixed no 4 96s 9 864s

7 1 Always yes fixed no 4 103s 8 826s
8 4 Always yes fixed no 4 79s 9 708s

9 1 Always yes scaled no 4 93s 8 746s
10 4 Always yes scaled no 4 76s 9 681s

11 1 Always yes scaled yes 4 80s 8 636s
12 4 Always yes scaled yes 4 64s 9 574s

13 1 Always yes scaled yes 16 85s 8 682s
14 4 Always yes scaled yes 16 60s 9 536s

15 1 Always yes scaled yes 64 111s 8 890s
16 4 Always yes scaled yes 64 74s 9 668s

Table 4: Overall runtimes, iteration counts and average time per iteration for the
various solver options, with a (64)2 × 4096 space-time grid.

the solution from the previous MGRIT iteration. As MGRIT converges, the solution
from the previous iteration becomes an ever improving initial guess.2

The main drawback of using the previous MGRIT iteration is that the solution
must be stored at all points in time. To limit memory usage, one can alternatively
choose to store the solution at the fine grid C-points only and to then use the previous
MGRIT iteration (PMI) as the initial guess whenever it is available. In this way, the
PMI is used as the initial guess during all time steps, except those completed during
fine grid F-relaxation, where the previous time step is used. This approach, referred
to as PMI at C-Points, is used by solvers 3 and 4. Overall, storing all points as
opposed to just C-points requires storing (roughly) a factor of m more points in
time per processor. This creates a tension between memory usage and computational
efficiency.

Table 5 shows c
(j)
` over all levels and iterations, scaled entry-by-entry with the

corresponding entry from the naive MGRIT baseline from Table 2. For example, entry

2As an implementation note, after some MGRIT iterations, the initial guess to Newton can
become so good that it satisfies the Newton solver’s tolerance. However, MGRIT needs relaxation
to update the solution, or face stagnation. Therefore, the Newton solver is forced to iterate at least
until the nonlinear residual is reduced.

13

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 1.3298 1.2447 0.9988 0.7112 0.7719 0.8484
1 1.2724 0.9088 0.5683 0.5227 0.4925 0.6388
2 0.9769 0.7506 0.4066 0.4437 0.4869 0.5789
3 0.7304 0.5221 0.3412 0.4162 0.5079 0.5989
4 0.5855 0.4926 0.3392 0.4164 0.5202 0.5833
5 0.5797 0.4926 0.3388 0.4124 0.5092 0.5833

Table 5: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT with the improved initial

guess at all points (solver 5), across each temporal level and MGRIT iteration. The
solver setup is otherwise identical to that used for Table 2. Cost estimates are scaled

entry-by-entry with c
(j)
`,naive, the naive MGRIT baseline costs from Table 2.

(2,3) in Table 5 has been scaled by entry (2,3) from Table 2. Values less than one
indicate that the cost per Newton solve was reduced by using the PMI, while values

greater than one indicate it increased. A large reduction in c
(j)
` is seen across most

temporal grids and iterations.

The only exception to this was on the finest two grids, during the first two it-
erations. In those cases, using the improved initial guess led to an increase in cost
due to an increase in Newton iterations. This is not surprising. During the first
few iterations the solution from the previous MGRIT iteration is either inaccurate or
unavailable.3

Based on these results, unless an accurate initial guess is known, the previous time
step should be used as the initial guess at all time points during the first iteration. On
all subsequent iterations, whenever possible, the previous MGRIT iteration should be
used.

Table 4 validates our strategy. Solvers 3 and 5, where the PMI is used as the
initial guess to the Newton solver at all points and only at coarse points (C-points),
show large reductions in overall runtime, a direct consequence of the cost reductions
seen in Table 5. Moreover, there is no degradation in MGRIT convergence. Solvers
4 and 6, where the PMI is used in conjunction with spatial coarsening, are discussed
in Section 5.4.

In conclusion, these results indicate that using the PMI as the initial guess is very
beneficial, reducing the runtime by 37% when comparing solvers 0 and 5 in Table 4.
For users with memory limitations, using the PMI only at C-points is a good option.

5.3. MGRIT with spatial coarsening. Motivated by results seen in Sec-
tion 4.2 and Table 1a, spatial coarsening is added to the naive solver from Section 4,
as indicated in Algorithm 1. In general, the user’s code defines the separate spatial in-
terpolation and restriction functions Px() and Rx().4 Here, the natural finite element
spatial restriction operator (and its transpose) is used to interpolate between regu-
larly refined spatial grids. This operator is provided by MFEM. Spatial interpolation

3 During the first iteration, at C-Points, the user supplied initial guess is returned as the solution
from the previous MGRIT iteration. The user does not define an initial guess at F-Points, so the
previous time step must be used.

4MGRIT semi-coarsens in time and is agnostic to the spatial discretization, thus spatial coars-
ening is an extra option available to the user.

14

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 1.0000 1.0090 1.0248 0.2574 0.05931 0.01241
1 1.0081 1.0070 0.9976 0.2456 0.05562 0.01177
2 1.0028 1.0000 1.0000 0.2241 0.05180 0.01078
3 1.0000 1.0000 1.0023 0.2184 0.05339 0.01067
4 1.0000 1.0000 0.9988 0.2201 0.05379 0.01067
5 1.0000 1.0000 1.0000 0.2184 0.05379 0.01067

Table 6: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT with spatial coarsening

(solver 1), across each temporal level and MGRIT iteration. Spatial coarsening begins
on the fourth time level, δt = 1/16. The previous time step is used as the initial guess
at all points. The solver setup is otherwise identical to that used for Table 2. Cost

estimates are scaled entry-by-entry with c
(j)
`,naive, the naive MGRIT baseline costs

from Table 2.

is the scaled (by 1/4) transpose of restriction so that RxPx ≈ I. The choice of spatial
interpolation operators is an area of active research; however, it is not surprising that
scaling so that RP resembles an oblique projection helps MGRIT convergence. A
better choice here could lead to improved results below.

Using coarse spatial grids on the coarse time levels drastically reduces c
(j)
` . The

trade-off is that the coarse grid solves are less accurate, which, in turn, can reduce
the MGRIT convergence rate.

When used without spatial coarsening, one benefit of the two-grid MGRIT al-
gorithm is that, given an exact coarse grid solution, interpolation yields an exact
fine grid solution. Error introduced by restriction and interpolation between spatial
meshes removes this property. Without this exactness, any error modes introduced,
specifically error modes in the null space of the spatial restriction operator, must be
damped solely by FCF-relaxation. In many cases this causes a degradation of the
MGRIT convergence rate. More precisely, with spatial restriction and prolongation,
the temporal two-grid error propagation operator from (2.5) becomes

(5.1) P (I − PxB−1
∆ RxA∆)(I −A∆)RI ,

where B∆ is now on a coarse spatial grid. Table 6 depicts the results with this idea and

scales each c
(j)
` with the corresponding cost estimates found using the naive MGRIT

baseline in Table 2. To highlight the cost saving benefits of spatial coarsening, this
table shows results that use the previous time step as the initial guess for the Newton
solve. Section 5.4 discusses the combined effect of spatial coarsening and the improved
initial guess, introduced in Section 5.2.

In addition to reducing Newton iterations on the coarse grids, spatial coarsening
also reduced the number of spatial unknowns on those levels. The effect of this is
highlighted in Table 6. On the coarsest grid, the average cost per Newton Solve is
100 times smaller than the cost to complete the same solve using the naive baseline.
The benefit of these dramatic cost reductions is validated by the improved timings in
Table 4. Here, solvers 0, 1 and 2 apply varying levels of spatial coarsening.

Solver 2, where spatial coarsening begins on the first coarse grid, leads to a degra-
dation in MGRIT convergence. This degradation is still a subject of active research

15

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 1.3298 1.2477 1.0035 0.2538 0.0417 0.0084
1 1.2942 0.9439 0.5850 0.1246 0.0271 0.0077
2 1.0000 0.7748 0.4150 0.1067 0.0257 0.0073
3 0.7391 0.5197 0.3423 0.1054 0.0262 0.0072
4 0.5826 0.4926 0.3392 0.1067 0.0262 0.0072
5 0.5797 0.4926 0.3388 0.1054 0.0262 0.0072

Table 7: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT when using spatial coarsen-

ing and the improved initial guess (solver 6), across each temporal level and MGRIT
iteration. The solver setup is otherwise identical to that used for Table 2. Cost esti-

mates are scaled entry-by-entry with c
(j)
`,naive, the naive MGRIT baseline costs from

Table 2. Spatial coarsening again begins on the fourth time level, δt = 1/16.

and likely relates to the discussion above regarding the scaling of spatial interpolation,
and the information lost when moving to coarse levels as described in equation (5.1).
For practical purposes, this solver is unusable as the convergence degradation con-
tinues for larger problems. This is unfortunate given that this approach has a much
smaller runtime per iteration.

In solver 1, spatial coarsening is delayed until the fourth temporal level, limiting
any degradation in the MGRIT convergence rate, while still allowing for a dramatic

reductions in c
(j)
` on the coarse grids. This leads to a large reduction in the overall

cost and run-time. This is the strategy pursued in this paper and it has proven to
be robust in our tests. Compared to the naive baseline (solver 0), delayed spatial
coarsening (solver 2) provides a 36% percent improvement in overall runtime.

5.4. Combining the improved initial guess and spatial coarsening. Sec-
tions 5.2 and 5.3 introduced an improved initial guess and spatial coarsening. Individ-
ually these improvement reduced the overall runtime by 37% and 36%, respectively.

Table 7 gives a cost analysis of the MGRIT algorithm when these strategies are
combined, using 4 levels of spatial coarsening and the PMI at all points. In this table
each cost estimate is again scaled by the corresponding cost estimate calculated using
the naive MGRIT baseline.

Solvers 4 and 6, from Table 4, show the effect of using both of these options.
When compared to the “naive” baseline, solver 4, where the PMI is used only at C-
points, gives a 50% reduction in runtime. Solver 6 uses the PMI at all points, giving a
54% reduction in runtime, the best result so far. There is no degradation in MGRIT
convergence.

6. Further Cost Savings. While the improved initial guess and spatial coars-
ening are, by far, the most effective strategies presented, several more strategies for
reducing the cost of MGRIT are now considered. The effect of these strategies is
significantly smaller than that for spatial coarsening and the improved initial guess;
thus we will now normalize the cost analysis tables with respect to the just previously
considered solver configuration. For example, the next table in Section 6.1 is scaled
entry-by-entry by the raw cost estimates corresponding to Table 7 from Section 5.4.
The table after that in Section 6.2 is scaled entry-by-entry by the raw cost estimates
corresponding to the table from Section 6.1, and so on. An entry greater than 1

16

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 0 2.2623 2.7090 1.5563 2.0275 2.6500
1 0.5747 0.7648 0.7601 2.9966 2.5188 1.8750
2 0.8530 0.9343 1.0778 0.1877 1.3303 1.0937
3 1.0470 1.1421 1.0724 1.0447 1.0076 0.9687
4 1.0945 1.0200 1.0069 0.9962 1.0000 1.0000
5 1.005 1.0000 1.0000 1.0000 1.0000 1.0000

Table 8: Relative cost estimates, c
(j)
` /c

(j)
`,7, for MGRIT when skipping work during

the down-cycle during iteration 0 (solver 8), across each temporal level and MGRIT
iteration. The solver setup is otherwise identical to that used for Table 7 (solver 6).

Cost estimates are scaled entry-by-entry with c
(j)
`,7, the raw cost estimates used to

generate Table 7.

represents a deterioration relative to the previous solver configuration, while a value
less than 1 represents an improvement.

6.1. Skipping Unnecessary Work. Even with the improvements so far, c
(j)
i

remains large during the first three MGRIT iterations. Consider iteration 0 and the
down-cycle and up-cycle parts of Figure 4. For the model problem, where no prior
knowledge of the solution is available, it is clear that relaxation during the down
cycle of iteration 0 provides no benefit. The first time that global information is
propagated is during the coarse grid solve, and the subsequent up cycle, of iteration
0. Therefore, all relaxation, and in fact work of any kind, during the down-cycle of
iteration 0 can be omitted. In this setting, the solution on the finest-grid is injected
to the coarsest-grid and then serially propagated. Then, the solution is interpolated
back to the finest-grid. This strategy is similar to full multigrid methods. In general,
there may be times when this work should not be skipped. For example, when some
a priori knowledge of the solution is available, and a useful initial guess is available.

Table 8 shows the cost analysis for this approach (solver 8) when it is added to
the solver strategy from Section 5.4 (solver 6), where the PMI is used as the initial
guess, along with four levels of spatial coarsening. The cost analysis is similar if

spatial coarsening is not used. To better discern the improvements, c
(j)
` is scaled by

the corresponding raw cost estimates generated when using solver 6. Interestingly,
skipping work actually increases the cost of a Newton solve in most places during the
first few iterations. However, the corresponding solvers 7 and 8 in Table 4 show that
this strategy reduces the overall runtime with no degradation in MGRIT convergence.
The reduced runtime is due to the fact that the time-stepping routine is called far
fewer times during iteration 0, despite being more expensive when it is called. For
instance, the “0” denotes the fact that there is no work done on the first level for
iteration 0, by far the most expensive level. On coarse levels, during iteration 0, only
interpolation (F-relaxation) is performed.

6.2. Newton solver accuracy. Here, further updates are made to the solver
from the last section. In this case, the Newton solver tolerance is loosened on the
coarse grids. Reduction in the accuracy of the coarse grid solves proved to be an
effective way of minimizing overall run times for linear problems [10]. In that case,
the number of spatial V-cycles allowed by the coarse grid linear solver was capped.

17

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 0 0.9946 0.9869 0.9864 0.9683 0.9669
1 1 0.9320 0.8983 0.9779 0.9580 0.9333
2 1 0.9364 0.8796 9.4752 0.8997 0.8857
3 1 0.9419 0.8617 0.9053 0.8586 0.9032
4 1 0.9852 0.8472 0.9253 0.8759 0.9062
5 1 1.0000 0.8496 0.9253 0.8759 0.9062

Table 9: Relative cost estimates, c
(j)
` /c

(j)
`,8, for MGRIT when using a scaled Newton

tolerance (solver 10) across each temporal level and MGRIT iteration. The solver
setup is otherwise identical to that used for Table 8 (solver 8). Cost estimates are

scaled entry-by-entry with c
(j)
`,8, the raw cost estimates used to generate Table 8.

Here, varying the solver tolerance across temporal levels is investigated, rather than
capping iteration counts (see Remark 6.1).

One way to reduce work on the coarse grids is to loosen the Newton solver toler-
ance on a per-level basis, with looser tolerances corresponding to coarser grids. The
Newton solver tolerance on the coarse grid scales as

(6.1) tol = min

(
m`

(
h`
h0

)2`

tolf , 0.001

)
,

where ` = 0 is the finest level, tolf is the desired Newton tolerance on the finest
grid and h` is the spatial mesh width on level `. In this case, tolf = 1 × 10−7. The
scaling with m and h allows one to consistently compare Newton residual norms across
spatially and temporally coarsened grids (the overall method is O(δt, h2)).

Table 9 shows the cost analysis for this approach (solver 10) when it is added to
the solver strategy from Section 6.1 (solver 8). The cost analysis is similar if spatial

coarsening is not used. The cost estimates, c
(j)
` , are scaled by the corresponding raw

cost estimates generated using the previous solver 8. This allows one to easily see the
benefit of only this strategy. Examination of Table 4 (solvers 9 and 10) then validates

the cost estimate heuristic, where the across the board reduction in c
(j)
` leads to a

decrease in runtime and no degradation in MGRIT convergence.
Remark 6.1. An alternative to the variable tolerance is to simply cap the number

of Newton iterations on the coarse grids in a manner similar to that pursued for linear
problems in [10]. With this strategy, the number of Newton iterations is allowed to
vary on the fine grid, until the tolerance is met. But on coarse grids, the iteration
count is capped. However, this is more dangerous in the nonlinear setting because each
Newton iteration is not guaranteed to reduce the residual by a fixed amount, as opposed
to the linear case in [10]. Indeed, our experiments have shown that this approach easily
leads to degraded MGRIT convergence and must be tuned to each individual grid size.
Therefore, it is not considered any further.

6.3. Cheap initial iterates. The initial three iterates are the most expensive,

with c
(j)
` significantly higher on all levels. The solution at this point is still inaccurate,

so another obvious modification is to reduce the Newton tolerance during the first
three iterations. Our simple strategy here is to use tolf = 10−3 (as opposed to 10−7)

18

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 0 0.9411 0.9515 0.9541 0.9719 0.9658
1 0.7399 0.7291 0.6577 0.9435 0.9437 1.0000
2 0.7195 0.7535 0.6474 0.8578 0.8860 1.0000
3 1.0299 1.0088 1.0074 1.0000 1.0000 1.0000
4 1.0045 1.0000 1.0081 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0082 1.0000 1.0000 1.0000

Table 10: Relative cost estimates, c
(j)
` /c

(j)
`,9, for MGRIT when using the cheap initial

iterate strategy (solver 12) across each temporal level and MGRIT iteration. The
solver setup is otherwise identical to that used for Table 9 (solver 10). Cost estimates

are scaled entry-by-entry with c
(j)
`,9, the raw cost estimates used to generate Table 9.

for the Newton tolerance strategy from equation (6.1) during the first three iterations.
Thereafter, tolf returns to 10−7.

Table 10 shows the cost analysis for this approach (solver 12) when it is added to
the previous solver strategy from Section 6.2 (solver 10). The cost analysis is similar if

spatial coarsening is not used. The cost estimates, c
(j)
` , are scaled by the corresponding

raw cost estimates generated using the previous solver 10, so that values less than 1
represent an improvement over Table 9. These scaled values do show the expected
drop in the cost estimate during iterations 0, 1 and 2. This drop is especially large on
the finest grid, where the decrease is by about 20-25%. Table 4 (solvers 11 and 12)
validates this by showing a decreased runtime and no degradation in overall MGRIT
convergence.

Remark 6.2. One other solver modification for improved performance is cap-
ping the number of inner linear iterations on coarse grids, similar to [10]. Here, the
BoomerAMG solver is used for each Newton iteration and the number of BoomerAMG
iterations can be capped. These tests use a cap of 8; however, this number can be low-
ered further (our experiments went as low as 5 with no noticeable degradation), but
to avoid over-tuning the problem, 8 was used. For solvers 11 and 12 (and all higher
numbers) this feature has been added. Given it’s small impact, a solver ID number
was not devoted to this change.

6.4. Setting the coarsest grid size. The final algorithmic enhancement con-
sidered is the size of the coarsest grid. Given how relatively expensive the Newton
solver is on coarse grids, the question naturally arises whether truncating the number
of levels in the hierarchy can be beneficial. However, this involves a trade-off. When
a level is truncated from the hierarchy, the expensive Newton solves are no longer
done at that level and the communication involved with visiting that level is avoided.
However, the sequential part of the algorithm increases because the coarsest grid size
has now increased. Thus, the best coarsest grid size is naturally problem and machine
dependent. So far, the coarsest grid size has been 4, but here, coarsest grids of size
16 and 64 as now also considered. Since changing the coarsest grid size changes the
cost estimates very little, that data is omitted.

For the case of a coarsest grid size of 16 (solvers 13 and 14) Table 4 shows a
significant speedup of 44s when using spatial coarsening, but a slow down of 19s for
the case of no spatial coarsening. This is because spatial coarsening makes the spatial

19

Iteration δt = 1/1024 1/256 1/64 1/16 1/4

0 0 2.6385 2.5492 0.3723 0.07642
1 0.5501 0.4838 0.2543 0.2349 0.04057
2 0.6027 0.4965 0.2418 0.0807 0.02092
3 0.7595 0.5317 0.2985 0.0972 0.02310
4 0.6233 0.4923 0.2888 0.0983 0.02310
5 0.5798 0.4923 0.2888 0.0974 0.02310

Table 11: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT when using the most

effective combination of the suggested improvements (solver 14), across each temporal

level and MGRIT iteration. Cost estimates are scaled entry-by-entry with c
(j)
`,naive,

the raw cost estimates used to generate Table 2.

grid on the coarsest grid much smaller, and hence, the sequential solve required on
the coarsest level is much cheaper. In other words the penalty for a larger coarsest
grid size is much smaller for the case of spatial coarsening.

For the case of a coarsest grid size of 64, (solvers 15 and 16 in Table 4), the extra
work from the larger sequential component of the solve on the coarsest level swamps
any benefit and the run times increase substantially for both solvers 15 and 16. Given
that solver 14 is the best overall performing solver, a maximum coarse grid size of 16
is used in scaling studies below.

6.5. Most effective improvements. Not surprisingly, the largest overall re-
duction in runtime is seen when spatial coarsening and the improved initial guess
where used in conjunction with the four improvements outlined in sections 6.1-6.4.

Table 11 gives a cost analysis of this approach (solver 14). In this table cost
estimates are scaled entry-by-entry with the naive MGRIT baseline from Table 2.

Levels 1 and 2 of the first iteration are the only entries for which c
(j)
` increases.

However, because the time-stepping routine is called far fewer times during iteration
0, despite being more expensive when it is called (see Section 6.1), the cost to complete
iteration 0 here is far less than the cost to complete the first iteration of the naive
baseline. Comparing to Table 7, so that the overall effect of the improvements from
sections 6.1-6.4 can be measured, shows that most of the work saved is on the first
two temporal levels (note that there is one less level in Table 11.) Regarding runtime,
Table 4 validates our strategy. Solver 14 is 3.54 times faster than the naive baseline,
a direct consequence of the across the board cost savings seen in Table 11.

While many improvements have been outlined, Table 4 makes it clear that two
of the improvements, the improved initial guess and spatial coarsening, are the most
important. This can be seen by comparing solver 0 to solver 5 (to see the impact
of the improved initial guess), which shows a 37% improvement. Then, when solver
5 and solver 6 are compared (to see the impact of spatial coarsening), a further
28% improvement is seen. The other four strategies in concert combine for another
48% improvement (compare solver 6 with solver 14). The subsequent scaling studies,
therefore, focus on solvers 0, 1, 6 and 14.

7. Scaling Studies. Previous sections have focused on producing the most ef-
ficient Newton solver as a proxy for MGRIT efficiency. Here, in an effort to validate
that heuristic, parallel scaling studies are presented.

20

ID \Grid: 162 × 256 322 × 1024 642 × 4096 1282 × 16384 2562 × 65536

0 4 7 9 10 10
1 6 8 9 11 10
6 6 8 9 11 10
14 6 8 9 11 10

Table 12: Weak scaling study: MGRIT iteration counts.

7.1. Optimal multigrid scaling. In this subsection, to test the optimality of
MGRIT for the chosen model problem, a domain refinement study is presented. This
was completed in a manner similar to the way in which spatial multigrid optimality is
tested experimentally. That is, the space-time domain was fixed ([0, 2]2× [0, 4]) while
the spatial and temporal resolution were scaled up, keeping δt/h2 fixed. For runs
using spatial coarsening, the number of levels of spatial coarsening was increased on
each subsequent test, resulting in 4 levels of spatial coarsening on the largest space-
time grid of 2562×65 536. The solvers considered are 0, 1, 6, 14, so that (respectively)
the effects of spatial coarsening, the improved initial guess for the Newton solver, and
all the other enhancements, can be examined.

Table 12 shows the number of MGRIT iterations required for each solver to re-
duce the MGRIT residual to within a fixed tolerance, across the range of weakly
scaled space-time grids described above. In general, observed iteration counts appear
bounded independently of problem size for all the solver options considered. Unfortu-
nately, using this experiment for weak scaling timings requires more processors than
our machine provides (131K processors are available). For example, consider a weak
scaling experiment where the smallest problem size involves 8 compute nodes, with 16
processors per node, for a total of 128 processors. A base test case that involves some
off-node communication is needed, hence the choice of 8 compute nodes. To maintain
a constant problem size per node and a constant δt/h2, the number of time points
must quadruple as the spatial problem size is doubled. This corresponds to increasing
the node count by a factor of 16. Thus, to obtain four data points, 128∗163 = 524 288
processors would be required.

7.2. Strong scaling. Both MGRIT and sequential time stepping are O(N) op-
timal, but the constant for MGRIT is larger. On the other hand, MGRIT allows for
temporal parallelism. This leads to a crossover point, after which MGRIT is bene-
ficial. To illustrate this, a strong scaling study of MGRIT, for the space-time grid
of (128)2 × 16384, was completed. Figures 5a and 5b show the results. The plot for
“ID=14, linear problem” corresponds to the comparable linear problem of p = 2 in
equation (1.3). This allows one to compare MGRIT’s scaling for the nonlinear prob-
lem with the scaling for the corresponding linear problem. To generate the data for
“ID=14, linear problem”, we simply set p = 2 in the code and make no other opti-
mizations, e.g., the spatial matrix and solver are still built during every application
of Φ, as is required in the nonlinear case, so that the comparison is fair.5

The other plots are for the sequential (“Time-stepping”) time-stepping code and

5The spatial matrix and solver actually only need to be built once as in [10], because p = 2 is a
constant coefficient heat equation. But, this is not done here for the purposes of a fair comparison
between the linear and nonlinear cases.

21

101 102 103 104 105

Processors

102

103

104

R
u

nt
im

es
(s

)

Time-stepping

ID=0

ID=1

ID=6

ID=12

ID=14

ID=14, linear prob

(a)

101 102 103 104 105

Processors

102

103

104

R
u

nt
im

es
(s

)

Time-stepping

ID=0

ID=1

ID=6

ID=12

ID=14

ID=14, linear prob

(b)

Fig. 5: Strong scaling study for a (128)2 × 16385 space-time grid, Left: 16 processors
in space, m = 16, Right: 32 processors in space, m = 4.

solver ID’s 0, 1, 6, 12 and 14. This allows for a comparison of naive MGRIT (ID=0)
with the effects of spatial coarsening (ID=1), the improved initial guess (ID=6) and
the effects of all the other improvements (ID’s=12, 14).

Figure 5 depicts the results for m = 16 with 16 processors in space on the left,
while the right shows the results for 32 processors in space and m = 4. The coarsening
factor, m, changes to indicate that this is an important user parameter affecting the
speedup observed and the overall number of processors used. For the m = 16 case,
the crossover point at which MGRIT is beneficial is well below 1024 processors, or
about 35 processors in time. The maximum speedup attained is a factor of 6.7 at
16384 processors. For the m = 4 case, the crossover point is at about 2000 processors,
or about 500 processors in time. Yet, this smaller coarsening factor allows one to use
more of the machine, and at 130K processors, the speedup is 18. The data points in
each plot end when there are m points in time per processor, i.e., when using more
processors in time provides no benefit. This is because FCF-relaxation is sequential
over each interval of m points.

Figure 5 highlights another important aspect of the MGRIT algorithm. Increasing
processors in space allows for greater scaling potential, but, given a fixed number of
processors, it is often beneficial to bias the processor distribution towards temporal
processors until m equals the number of time points per processor. A last important
point is that, for the tests presented here, MGRIT converged in 9 iterations, but
discretization error was reached after 5 iterations. Thus, the speedups presented
here are largely understated. Halting MGRIT in a more automatic fashion after
discretization error is reached is a topic of further research.

Compared to the strong scaling for the linear problem presented in Figure 1,
these results are not as good. Optimal scaling would be represented by “straighter”
lines, however, achieving this is difficult. The dataset for the linear heat equation
(“ID=14, linear problem”) is very similar to the experiment in Figure 1. In fact, the
only differences are: (1) bi-linear finite elements on a regular grid were used in space,
as opposed to finite differencing; (2) the BoomerAMG solver in hypre was used, as
opposed to the more efficient geometric-algebraic solver PFMG in hypre; and (3) the
spatial discretization and spatial multigrid solver was built during every time step.
However, in these tests the data set for the linear heat equation shows less than linear
strong scaling. Improving strong scaling here will require addressing each of the three

22

differences described above. Difference (1) can be discounted because it does not
change the sparsity pattern of the spatial operator, nor does it qualitatively change
the convergence rate of the spatial multigrid solver. Thus, the most likely culprits for
the strong scaling degradation are the parallel finite-element matrix assembly and the
BoomerAMG setup-phase, although BoomerAMG is known to be an efficient spatial
multigrid code. This is a topic for future research.

The goal of this paper is to show that, by implementing several simple strategies,
an efficient implementation of the MGRIT algorithm for nonlinear problems is possi-
ble. As a measure of that efficiency, the MGRIT algorithm was compared against a
similar implementation of a linear problem. This linear implementation, represented
by the “ID=14, linear prob” plot, represents the strong scaling one would expect to
see if, when using solver 14, each and every Newton iteration converged in exactly
two iterations. The overall scaling behavior is similar, with deterioration for both
at larger processor counts. However, MGRIT for the nonlinear problem does scale
somewhat less well. This is due in large part to the phenomenon discussed with Ta-
ble 3, where the relatively more expensive coarse grid solves for the nonlinear problem
reduce scalability and increase the overall cost. The chief strategy under research now
is to improve spatial coarsening so that it can begin on the first coarse grid, which
will significantly reduce this effect.

It is important to note that, even at it’s worst, MGRIT for the nonlinear problem
is only about 3 times slower than for the linear problem. This is a good result,
considering MGRIT takes at least 2, but often many more, linear solves per time step
(depending on level and iteration).

8. Conclusions. The MGRIT algorithm effectively adds temporal parallelism to
existing sequential solvers and has been shown to be effective for linear problems [10].
However, when moving to the nonlinear setting, the relatively large time-step sizes
on coarse grids make the application of MGRIT nontrivial. The proposed measures
allow MGRIT to achieve similar performance to a comparable linear problem.

In summary, after the first iteration, the user should always use the solution from
the previous MGRIT iteration as the initial guess to the nonlinear time-stepping
routine (here, a Newton solver). When memory constraints inhibit this approach,
using the previous MGRIT iteration whenever it is available still provides dramatic
speedups. Thus, there is a tension between memory usage and computational effi-
ciency. Secondly, spatial coarsening should be used whenever possible. For the linear
example in Figure 1, spatial coarsening was implemented on all levels effectively. Tests
showed that for the nonlinear model problem this was not the best strategy. However,
delaying spatial resolution until the fourth temporal level both dramatically reduced
the cost of a Newton solve on the coarser grids and limited degradation of the MGRIT
convergence rate. These two changes gave the largest speedup. The other changes,
when combined, also effected a significant speedup.

Weak scaling results showed that MGRIT is a scalable algorithm for nonlinear
problems, with iteration counts bounded independently of problem size. Strong scal-
ing showed the benefit of MGRIT, with an up to 18 times speedup seen over the
corresponding sequential time stepping routine. The scaling is not as ideal as in
[10], but with the modifications given here, similar performance was attained when
compared to the corresponding linear problem.

REFERENCES

23

[1] P. Bastian, J. Burmeister, and G. Horton, Implementation of a parallel multigrid method
for parabolic partial differential equations, in Parallel Algorithms for PDEs, Proc. 6th
GAMM Seminar Kiel, January 19-21, 1990, W. Hackbusch, ed., Braunschweig, 1990,
Vieweg Verlag, pp. 18–27.

[2] B. Bjorn and J. Rowlett, Mathematical models for erosion and the optimal transportation
of sediment, International Journal of Nonlinear Sciences and Numerical Simulation, 14
(2013), pp. 323–337.

[3] A. Brandt, Multi-level adaptive computations in fluid dynamics, 1979. Technical Report
AIAA-79-1455, AIAA, Williamsburg, VA.

[4] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse
matrix equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge Univ.
Press, Cambridge, 1984, pp. 257–284.

[5] P. Chartier and B. Philippe, A parallel shooting technique for solving dissipative ODEs,
Computing, 51 (1993), pp. 209–236.

[6] Andrew J. Christlieb, Colin B. Macdonald, and Benjamin W. Ong, Parallel high-order
integrators, SIAM Journal on Scientific Computing, 32 (2010), pp. 818–835.

[7] H. De Sterck, T. A. Manteuffel, S. F. McCormick, and L. Olson, Least-squares finite
element methods and algebraic multigrid solvers for linear hyperbolic PDEs, SIAM J. Sci.
Comput., 26 (2004), pp. 31–54.

[8] A. Elmoataz, M. Toutain, and D. Tenbrinck, On the p-laplacian and ∞-laplacian on graphs
with applications in image and data processing, SIAM Journal on Imaging Sciences, 8
(2015), pp. 2412–2451.

[9] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differ-
ential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105–132.

[10] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder,
Parallel time integration with multigrid, SIAM Journal on Scientific Computing, 36 (2014),
pp. C635–C661.

[11] R. D. Falgout, A. Katz, Tz.V. Kolev, J. B. Schroder, A. Wissink, and U. M. Yang,
Parallel time integration with multigrid reduction for a compressible fluid dynamics appli-
cation., Lawrence Livermore National Laboratory Technical Report, LLNL-JRNL-663416,
(2015).

[12] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Do-
main Decomposition, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds., Springer,
2015, pp. 69–114.

[13] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration
method., SIAM Journal on Scientific Computing, 29 (2007), pp. 556–578.

[14] Stefan Güttel, A parallel overlapping time-domain decomposition method for ODEs, in Do-
main decomposition methods in science and engineering XX, vol. 91 of Lect. Notes Comput.
Sci. Eng., Springer, Heidelberg, 2013, pp. 459–466.

[15] W. Hackbusch, Parabolic multigrid methods, in Computing methods in applied sciences and
engineering, VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 189–197.

[16] G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods, 8 (1992),
pp. 585–595.

[17] G. Horton and R. Knirsch, A time-parallel multigrid-extrapolation method for parabolic
partial differential equations, Parallel Comput., 18 (1992), pp. 21–29.

[18] G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial differ-
ential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848–864.

[19] G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complex-
ity for solving parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995),
pp. 531–541.

[20] HYPRE: High performance preconditioners. http://www.llnl.gov/CASC/hypre/.
[21] H. B. Keller, Numerical methods for two-point boundary-value problems, Blaisdell Publishing

Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968.
[22] P. Lindqvist, Notes on the p-laplace equation, tech. report, Department of Mathematics, Ohio

State University, 2006.
[23] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps

“pararéel”, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661–668.
[24] C. Lubich and A. Ostermann, Multigrid dynamic iteration for parabolic equations, BIT, 27

(1987), pp. 216–234.
[25] Yvon Maday and Einar M. Rønquist, Parallelization in time through tensor-product space-

time solvers, Comptes Rendus Mathématique. Académie des Sciences. Paris, 346 (2008),
pp. 113–118.

24

http://www.llnl.gov/CASC/hypre/

[26] S. F. McCormick and J. W. Ruge, Multigrid methods for variational problems, SIAM J.
Numer. Anal., 19 (1982), pp. 924–929.

[27] MFEM: Modular finite element methods. www.mfem.org.
[28] M. L. Minion and S. A. Williams, Parareal and spectral deferred corrections, in Numerical

Analysis and Applied Mathematics, T. E. Simos, ed., no. 1048 in AIP Conference Proceed-
ings, AIP, 2008, pp. 388–391.

[29] Willard L. Miranker and Werner Liniger, Parallel methods for the numerical integration
of ordinary differential equations, Math. Comp., 21 (1967), pp. 303–320.

[30] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM,
7 (1964), pp. 731–733.

[31] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods, S. F. Mc-
Cormick, ed., Frontiers Appl. Math., SIAM, Philadelphia, 1987, pp. 73–130.

[32] Dongwoo Sheen, Ian H. Sloan, and Vidar Thomée, A parallel method for time discretization
of parabolic equations based on Laplace transformation and quadrature, IMA Journal of
Numerical Analysis, 23 (2003), pp. 269–299.

[33] S. Vandewalle and G. Horton, Fourier mode analysis of the multigrid waveform relaxation
and time-parallel multigrid methods, Computing, 54 (1995), pp. 317–330.

[34] S. Vandewalle and R. Piessens, Efficient parallel algorithms for solving initial-boundary
value and time-periodic parabolic partial differential equations, SIAM J. Sci. Statist. Com-
put., 13 (1992), pp. 1330–1346.

[35] S. G. Vandewalle and E. F. Van de Velde, Space-time concurrent multigrid waveform relax-
ation, Ann. Numer. Math., 1 (1994), pp. 347–360. Scientific computation and differential
equations (Auckland, 1993).

[36] T. Weinzierl and T. Köppl, A geometric space-time multigrid algorithm for the heat equation,
Numer. Math. Theory Methods Appl., 5 (2012), pp. 110–130.

[37] XBraid: Parallel multigrid in time. http://llnl.gov/casc/xbraid.

25

www.mfem.org
http://llnl.gov/casc/xbraid

